I have to find the sum of the given series $$ S=1 + \frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+ \frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\frac{1}{13} +\cdots$$
My attempt $$ S=1 + \frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+ \frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\frac{1}{13} +\cdots$$ or, $$ S=1 + \left( \frac{1}{3}-\frac{1}{2}+\frac{1}{5} \right)+\left(\frac{1}{7}-\frac{1}{4}+ \frac{1}{9}\right)+\left(\frac{1}{11}-\frac{1}{6}+\frac{1}{13}\right)+\left( \frac{1}{15}-\frac{1}{8}+\frac{1}{17}\right)+ \cdots$$ or, $$S= 1+ \sum_{n=1}^\infty \left( \frac{1}{4n-1}-\frac{1}{2n}+\frac{1}{4n+1}\right)$$ or, $$S= 1+ \sum_{n=1}^\infty \left( \frac{1}{4n-1}-\frac{1}{4n}-\frac{1}{4n}+\frac{1}{4n+1}\right)$$ or, $$S= 1+ \sum_{n=1}^\infty \left( \frac{1}{(4n-1)(4n)}-\frac{1}{(4n)(4n+1)} \right)$$ Since rearrrangement is allowed now, we have $$S= 1+\sum_{n=1}^\infty \frac{1}{(4n-1)(4n)}-\sum_{n=1}^\infty\frac{1}{(4n)(4n+1)}$$ or, $$ S = 1+ I_1 - I_2$$ But even after many trials, I was unable to find the value of either $I_1$ or $I_2$, any help regarding this will be much appreciated.