Prove that if $||\cdot||$ satisfies $||u-v||^2 + ||u+v||^2 = 2(||u||^2 + ||v||^2)$ , then $u \cdot v = \frac{1}{2} (||u+v||^2 - ||u||^2 - ||v||^2)$ is dot product and $||u||^2 = u \cdot u$.
I've already shown that $(u+w)\cdot v = u \cdot v + w \cdot v$, but I have serious troubles showing that $(\lambda v)\cdot(w) = \lambda (v\cdot w)$.
Could you help me with that?