Hard case $x\leq y\leq z$ and $\frac{y}{x},\frac{z}{y}\in[\frac{121}{84},\infty)$:
We have the function :
$$h\left(x\right)=\frac{13}{8+5x^{3}}+\frac{83}{1000}\left(1-\frac{2x}{2x+1}\right)+\frac{0.2375x}{x+1}$$
And :
$$g\left(x\right)=\frac{214}{133+81x^{3}}$$
Lemma :
And for $x\in[\frac{121}{84},\infty)$ a real number :
$$f''(x)=g''(x)-h''(x)>0$$
The problem :
The inequality is equivalent to :
$$\frac{x}{x+y}g\left(\frac{y}{x}\right)+\frac{y}{x+y}g\left(\frac{z}{y}\right)+\frac{1}{x+y}\frac{214z^{4}}{133z^{3}+81x^{3}}-\frac{\left(x+y+z\right)}{x+y}\geq 0$$
Now we use the lemma and Jensen's inequality we got ($f(x)=g(x)-h(x)$):
$$\frac{x}{x+y}f\left(\frac{y}{x}\right)+\frac{y}{x+y}f\left(\frac{z}{y}\right)+\frac{1}{x+y}\frac{214z^{4}}{133z^{3}+81x^{3}}-\frac{\left(x+y+z\right)}{x+y}\geq f\left(\frac{\left(z+y\right)}{x+y}\right)+\frac{1}{x+y}\frac{214z^{4}}{133z^{3}+81x^{3}}-\frac{\left(x+y+z\right)}{x+y}$$
Or after summation:
$$a(x,y,z)=\frac{x}{x+y}h\left(\frac{y}{x}\right)+\frac{y}{x+y}h\left(\frac{z}{y}\right)+\frac{1}{x+y}\frac{214z^{4}}{133z^{3}+81x^{3}}+g\left(\frac{\left(z+y\right)}{x+y}\right)-h\left(\frac{\left(z+y\right)}{x+y}\right)-\frac{\left(x+y+z\right)}{x+y}\geq 0$$
Remains to show that it is positive and BW helps but it's lenghty and I cannot check all the coefficients .
We have as expression expanded $y\geq 1$ a real number:
$$a(1,1+x,1+xy)= \mbox{the very long expression is given in the link blow}$$https://sagecell.sagemath.org/?q=ssnesu
Edit 18/04/2022:
Let $x\ge1 $ then it seems we have :
$$g''\left(x\right)-h''\left(x\right)-\frac{17}{100}f''\left(x\right)>0$$
Where :
$$f\left(x\right)=\frac{214x^{-1}}{133+81x^{3}}+\frac{x^{2}}{x}\frac{214}{133+81x^{-3}}-\frac{13x^{-1}}{8+5x^{3}}-\frac{x^{2}}{x}\frac{13}{8+5x^{-3}}$$
And :
$$h\left(x\right)=\frac{13}{8+5x^{3}}+\frac{0.13x}{x+1}+\frac{17}{100}f\left(x\right)$$
And :
$$g\left(x\right)=\frac{214}{133+81x^{3}}$$
So starting from :
$$b(x,y,z)=\frac{x}{x+y}K\left(\frac{y}{x}\right)+\frac{y}{x+y}K\left(\frac{z}{y}\right)+\frac{1}{x+y}\frac{214z^{4}}{133z^{3}+81x^{3}}+g\left(\frac{\left(z+y\right)}{x+y}\right)-K\left(\frac{\left(z+y\right)}{x+y}\right)-\frac{\left(x+y+z\right)}{x+y}\geq 0$$
Where :
$$K(x)=h(x)+0.17f(x)$$
We can use Buffalo's way but it's not for the hand .
Edit :
Using tangent line method on $r(\frac{\left(z+y\right)}{x+y})=g\left(\frac{\left(z+y\right)}{x+y}\right)-h\left(\frac{\left(z+y\right)}{x+y}\right)$,$q(x)=-0.027126(x-((((121)/(84))+1)/(((43)/(66))+1)))-((15865219)/(100000000))<r\left(x\right)$ , $a=(121/84+1)/(43/66+1)$ we have for $\frac{\left(z+y\right)}{x+y}\geq a$ :
$$a(x,y,z)=\frac{x}{x+y}h\left(\frac{y}{x}\right)+\frac{y}{x+y}h\left(\frac{z}{y}\right)+\frac{1}{x+y}\frac{214z^{4}}{133z^{3}+81x^{3}}+q\left(\frac{\left(z+y\right)}{x+y}\right)-\frac{\left(x+y+z\right)}{x+y}$$
$$a(1,1+x/2,1+((x y)/(y+1)))=\mbox{the very long expression is given in the link below}$$https://sagecell.sagemath.org/?q=gprkws