The Catalan numbers give the number of ways to write a non-commutative non-associative product of $n$ terms, as $C_{n-1}\cdot n!=\frac{(2n-2)!}{(n-1)!}$. For example, there are $C_{3-1}\cdot3!=12$ ways to write a product of $3$ terms:
$$(ab)c,\;(ac)b,\;(ba)c,\;(bc)a,\;(ca)b,\;(cb)a,\\a(bc),\;a(cb),\;b(ac),\;b(ca),\;c(ab),\;c(ba).$$
What if the multiplication is commutative? Then we have $(ba)c=(ab)c=c(ab)$ and so on. How many distinct products can we make?
Here are the first few numbers.
$$a;$$
$N_1=1$.
$$ab;$$
$N_2=1$.
$$(ab)c,\;(ac)b,\;(bc)a;$$
$N_3=3$.
$$((ab)c)d,\;((ab)d)c,\;((ac)d)b,\;((bc)d)a,\;(ab)(cd),\\((ac)b)d,\;((ad)b)c,\;((ad)c)b,\;((bd)c)a,\;(ac)(bd),\\((bc)a)d,\;((bd)a)c,\;((cd)a)b,\;((cd)b)a,\;(ad)(bc);$$
$N_4=15$.