$$\prod_{i=1}^\infty\left(\frac{i+x}{i+1}\right)^{1/i}\stackrel{?}{=}x$$
I do not have the knowledge needed to prove this (assuming it is true).
quick equivalent forms:
$$\sum_{i=1}^{\infty}\frac{\log(i+x)-\log(i+1)}{i}\stackrel{?}{=}\log(x) $$
$$\sum_{i=1}^{\infty}\frac{\log\left(1-\frac{1-x}{i+1}\right)}{i}\stackrel{?}{=}\log(x) $$
all the solutions I know of have $i$ in the base or the exponent, but not both. It almost looks like Evaluation of $\prod_{n=1}^\infty e\left(\frac{n}{n+1}\right)^{n}\sqrt{\frac{n}{n+1}}$, except the solutions depend on integer exponents and I have fractional exponents.