The cardinality of $\mathbb{C}$ is $| \mathbb{C} | = |\mathbb{R} ^2| = (2^{\aleph_0})^2 = 2^{2\aleph_0} = 2^{\aleph_0}$.
This is based on a theorem saying that for any $\aleph_\alpha$ and $\aleph_\beta$, $\aleph_\alpha + \aleph_\beta = \aleph_{max(\alpha, \beta)}$ (the proof can for example be found in Thomas Jech's Set Theory).
The same way, the cardinality of $\mathbb{C}^n$ is, $\forall n \in \mathbb{N}\setminus\{0\}, |\mathbb{C}^n| = 2^{n\aleph_0} = 2^{\aleph_0}$.
The cardinal of $\mathbb{C}[x]$ is
$$
|\mathbb{C}[x]| = |\bigcup_{n \in \mathbb{N}\setminus\{0\}} \mathbb{C}^n|
= \sum_{n \in \mathbb{N}\setminus\{0\}} 2^{\aleph_0}
= \aleph_0 2^{\aleph_0} = 2^{\aleph_0}
$$
The last equality is because, actually the result you can look up (e.g. in Thomas Jech) is very strong:
$$
\forall \kappa,\lambda\mathrm{~infinite~cardinals}, \kappa+\lambda = \kappa\cdot\lambda = max(\kappa, \lambda)
$$
Note: to be rigorous, $\omega$ is used mainly to name the first infinite ordinal, whereas for the cardinal one prefers using the notation $\aleph_0$.