Hopefully I didnt do any mistake:
Note that
$$P_n(\frac{1}{n}+\frac{1}{n^{n+1}})= (\frac{1}{n}+\frac{1}{n^{n+1}})^n - \frac{1}{n^n}>0$$
Now, let $\alpha >1$. We have
$$P_n(\frac{1}{n}+\frac{\alpha}{n^{n+1}}) <0 \Leftrightarrow \\
\frac{1}{n}+\frac{\alpha}{n^{n+1}} < \frac{\sqrt[n]{\alpha}}{n} \Leftrightarrow \\
n(\sqrt[n]{\alpha} -1) \geq \frac{\alpha}{n^{n-1}}$$
Now,
$$\lim_n n(\sqrt[n]{\alpha} -1) =\lim_n \frac{\alpha^\frac{1}{n}-\alpha^0}{\frac{1}{n}-1}=\ln(\alpha) >0$$
and
$$\lim_n \frac{\alpha}{n^{n-1}}=0$$
This shows that for all $\alpha >1$ there exists some $N$ so that, for all $n>N$ we have
$$P_n(\frac{1}{n}+\frac{\alpha}{n^{n+1}}) <0 $$
It follows that asymptotically, we have
$$\frac{1}{n}+\frac{1}{n^{n+1}} < u_n < \frac{1}{n}+\frac{\alpha}{n^{n+1}} \qquad \forall \alpha >1$$
[i.e. For each $\alpha >1$, there exists a $N$ such that the above holds for all $n>N$]