- $B=\frac{\pi}{3}$
- $B=C$
- $A, B, C$ are in arithmetic progression
- $B+C=A$
$$2\cos \frac {A-C}{2}=\frac{\sin A+\sin C}{\sqrt{\sin^2 A+\sin^2 C -\sin A\sin C}}$$
$$\sqrt {\sin^2A+\sin^2C-\sin A\sin C}=\sin \frac{A+C}{2}$$
$$\sin^2A+\sin^2C-\sin A\sin C = \cos ^2 \frac B2$$
What should I do next?