Winther’s suggestion in the comments is a good one. Consider the following product of $m$ power series:
$$\prod_{i=1}^m\sum_{k_i\ge 0}a_{i,k_i}x^{k_i}$$
For $n\ge 0$ what is the coefficient of $x^n$? The product is
$$(a_{1,0}+a_{1,1}x+a_{1,2}x^2+\ldots)\cdot(a_{2,0}+a_{2,1}x+a_{2,2}x^2+\ldots)\cdot\ldots\cdot(a_{m,0}+a_{m,1}x+a_{m,2}x^2+\ldots)\;,$$
so each term in the product (before collecting like terms) has the form
$$a_{1,k_1}x^{k_1}\cdot a_{2,k_2}x^{k_2}\cdot\ldots\cdot a_{m,k_m}x^{k_m}=a_{1,k_1}a_{2,k_2}\ldots a_{m,k_m}x^{k_1+k_2+\ldots+k_m}\;.$$
This is an $x^n$ term iff $k_1+k_2+\ldots+k_m=n$. After collecting terms, therefore, the $x^n$ term will be
$$\sum_{\substack{k_1,\ldots,k_m\ge 0\\k_1+k_2+\ldots+k_m=n}}a_{1,k_1}a_{2,k_2}\ldots a_{m,k_m}x^n\;,$$
making the product series
$$\prod_{i=1}^m\sum_{k_i\ge 0}a_{i,k_i}x^{k_i}=\sum_{n\ge 0}\left(\sum_{\substack{k_1,\ldots,k_m\ge 0\\k_1+k_2+\ldots+k_m=n}}a_{1,k_1}a_{2,k_2}\ldots a_{m,k_m}\right)x^n\;.$$
Set $x=1$, and you have the desired result.