This is not a solution, its just a bonus using the generalization derived by Cornel shown in the solution above.
He showed
$$\sum_{n=1}^{\infty} \frac{\Gamma(n+a-1)}{\Gamma(n)}x^{n-1} =\frac{\Gamma(a)}{(1-x)^a},\quad ,\quad 0<a<1$$
Set $a-1=-b$ we have
$$\quad \sum_{n=1}^\infty\frac{\Gamma(n-b)}{\Gamma(n)}x^{n-1}=\frac{\Gamma(1-b)}{(1-x)^{1-b}},\quad 0<b<1\quad \cdots\cdots(1)$$
$$i)\quad\sum_{n=1}^\infty\frac{\Gamma(n-b)}{n^2\ \Gamma(n)}=\frac{\Gamma(1-b)}{b}H_{b}$$
$$ii)\quad\sum_{n=1}^\infty\frac{\Gamma(n-b)}{n^3\ \Gamma(n)}=\frac{\Gamma(1-b)}{2b}\left(H_{b}^2+H_{b}^{(2)}\right)$$
$$iii)\quad\sum_{n=1}^\infty\frac{\Gamma(n-b)}{n^4\ \Gamma(n)}=\frac{\Gamma(1-b)}{6b}\left(H_{b}^3+3H_{b}H_{b}^{(2)}+2H_{b}^{(3)}\right)$$
$$iv)\quad\sum_{n=1}^\infty\frac{H_n
\ \Gamma(n-b)}{n\ \Gamma(n)}=-\frac{\Gamma(-b)}{b}$$
where $i),\ ii)$ and $iii)$ follow from multiplying both sides of $(1)$ by $-\ln x,\ \frac12\ln^2x$ and $-\frac16\ln^3x$ respectively then $\int_0^1$ and $iv)$ follows from multiplying both sides of $(1)$ by $-\ln(1-x)$ then $\int_0^1.$
Also we used the following identities
$$\int_0^1x^{n-1}\ln(1-x)\ dx=-\frac{H_n}{n}$$
$$\int_0^1x^{n-1}\ln^2(1-x)\ dx=\frac{H_n^2+H_n^{(2)}}{n}$$
$$\int_0^1x^{n-1}\ln^3(1-x)\ dx=-\frac{H_n^3+3H_nH_n^{(2)}+2H_n^{(3)}}{n}$$