Show that if $\sum_{n=1}^{\infty}{a_n}$ converges, then $\lim_{n \rightarrow \infty}{na_n}=0$
Suppose $\lim_{n \rightarrow \infty}{na_n} \neq0$.
Since $\sum_{n=1}^{\infty}{a_n}$ converges, by divergence test , we have $\lim_{n \rightarrow \infty}{a_n}=0$. Then we have for large $N$, $|a_n| < \epsilon$
Since $\lim_{n \rightarrow \infty}{na_n} \neq0$, there exists a large $N_1$ such that $|na_n-L|< \epsilon$. Then I get stuck at here. Can anyone guide me ?