I found $2$ intersting hypergeometric identities on this site, which ultimately reduces to $$\small \ _4F_3\left(-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};1,1,2;1\right)-\frac{1}{8} \ _4F_3\left(\frac{1}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2};2,2,3;1\right)=\frac{8}{\pi ^2}$$ $$\scriptsize \ _5F_4\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};1,1,1,1;-1\right)-\frac{1}{8} \ _5F_4\left(\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2};2,2,2,2;-1\right)=\frac{2}{\Gamma \left(\frac{3}{4}\right)^4}$$ How to prove these identities? Any help will be appreciated.
Update: I found another proof for the second result. Due to certain corollary of Dougall formula (see Thm $3.4.6$ in Special functions, Andrews&Askey&Roy), i.e.
$$\, _6F_5\left(a,\frac{a}{2}+1,b,c,d,e;\frac{a}{2},a-b+1,a-c+1,a-d+1,a-e+1;-1\right)=\frac{\Gamma (a-d+1) \Gamma (a-e+1)}{\Gamma (a+1) \Gamma (a-d-e+1)} \ _3F_2(a-b-c+1,d,e;a-b+1,a-c+1;1)$$
We may set all $5$ parameters to be $\frac 12$ then recall from Clausen formula that $\, _3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,1;z\right)$ $=\frac{4 K\left(\frac{1}{2} \left(1-\sqrt{1-z}\right)\right)^2}{\pi ^2}$ and special value of $K\left(\frac{1}{2}\right)$ to arrive at $$\, _6F_5\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{4};\frac{1}{4},1,1,1,1;-1\right)=\frac{2}{\Gamma \left(\frac{3}{4}\right)^4}$$ Furthermore the very well-poised parameter pair $\frac{5}{4};\frac{1}{4}$ allows us to decompose the series, completing the proof.
Update $2$: Using Jack's method and FL expansion given here one may prove an important result (also obtainable via Dougall $_5F_4$):
$$\, _5F_4\left(\frac{1}{2},\frac{1}{2},\frac{5}{4},1-s,1-t;\frac{1}{4},s+\frac{1}{2},t+\frac{1}{2},1;1\right)=\frac{B(s+t-1,s+t-1)}{B(s,s) B(t,t)}$$
Provided that $s+t>1$. Letting $s\to\frac32, t\to \frac12$ and eliminating the very first term yields $$\, _6F_5\left(\frac{1}{2},1,\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{9}{4};\frac{5}{4},2,2,2,3;1\right)=\frac{32}{5} \left(1-\frac{8}{\pi ^2}\right)$$ Which is equivalent to the first result after simplifications. In one word, both $2$ identities are not-so-trivial corollaries of Dougall formula.