Not a duplicate of
This is exercise $3.4.20.a$ from the book How to Prove it by Velleman $($$2^{nd}$ edition$)$:
Suppose $\mathcal F$ and $\mathcal G$ are families of sets. Prove that $(\bigcup\mathcal F)\setminus(\bigcup\mathcal G)\subseteq\bigcup(\mathcal F\setminus\mathcal G).$
Here is my proof:
Let $x$ be an arbitrary element of $(\bigcup\mathcal F)\setminus(\bigcup\mathcal G)$. This means $x\in\bigcup\mathcal F$ and $x\notin\bigcup\mathcal G$. Since $x\in\bigcup\mathcal F$, we can choose some $A_0$ such that $A_0\in \mathcal F$ and $x\in A_0$. $x\notin\bigcup\mathcal G$ is equivalent to $\forall B(B\in\mathcal G\rightarrow x\notin B)$ and in particular $A_0\in\mathcal G\rightarrow x\notin A_0$. From $A_0\in\mathcal G\rightarrow x\notin A_0$ and $x\in A_0$, $A_0\notin\mathcal G$. From $A_0\in\mathcal F$ and $A_0\notin\mathcal G$, $A_0\in\mathcal F\setminus\mathcal G$. From $A_0\in\mathcal F\setminus\mathcal G$ and $x\in A_0$, $x\in\bigcup(\mathcal F\setminus\mathcal G)$. Therefore if $x\in(\bigcup\mathcal F)\setminus(\bigcup\mathcal G)$ then $x\in\bigcup(\mathcal F\setminus\mathcal G)$. Since $x$ is arbitrary, $\forall x\Bigr(x\in(\bigcup\mathcal F)\setminus(\bigcup\mathcal G)\rightarrow x\in\bigcup(\mathcal F\setminus\mathcal G)\Bigr)$ and so $(\bigcup\mathcal F)\setminus(\bigcup\mathcal G)\subseteq\bigcup(\mathcal F\setminus\mathcal G)$. $Q.E.D.$
Is my proof valid$?$
Thanks for your attention.