Disclaimer: This answer is overkill. Hopefully a useful overkill.
I will use this question to determine an explicit formula of the orthocenter (i.e. the intersection point of the altitudes) of a triangle in cartesian coordinates of $\mathbb R^2$.
Suppose we have a (non-degenerate) triangle with vertices $A=(a_1,a_2), B=(b_1,b_2), C=(c_1, c_2)\in\mathbb R^2$.
Then the line spanned by the altitude starting at $A$ is $$\left\{A+t\begin{pmatrix}c_2-b_2 \\ b_1-c_1\end{pmatrix}:t\in\mathbb R\right\}\subset\mathbb R^2.$$
Analogously, the line spanned by the altitude starting at $B$ is $$\left\{B+s\begin{pmatrix}a_2-c_2 \\ c_1-a_1\end{pmatrix}:s\in\mathbb R\right\}\subset\mathbb R^2.$$
To compute the intersection, we have to solve the following linear equation system:
$$A+t\begin{pmatrix}c_2-b_2 \\ b_1-c_1\end{pmatrix}=B+s\begin{pmatrix}a_2-c_2 \\ c_1-a_1\end{pmatrix}$$
for $s,t\in\mathbb R$.
The solution is $$t=\frac{\left(a_1-b_1\right) \left(b_1-c_1\right)+\left(a_2-b_2\right)
\left(b_2-c_2\right)}{a_2 \left(b_1-c_1\right)+b_2 \left(c_1-a_1\right)+c_2
\left(a_1-b_1\right)}, s=\frac{\left(a_1-b_1\right)
\left(a_1-c_1\right)+\left(a_2-b_2\right) \left(a_2-c_2\right)}{b_2
\left(a_1-c_1\right)+a_2 \left(c_1-b_1\right)+c_2 \left(b_1-a_1\right)}.$$
Plugging in $t$ into the altitude starting at $A$ gives the following explicit formula for the orthocenter:
$$\bbox[15px,border:1px groove navy]{\begin{pmatrix}\frac{\left(c_2-b_2\right) \left(\left(a_1-b_1\right)
\left(a_1-c_1\right)+\left(a_2-b_2\right) \left(a_2-c_2\right)\right)}{b_2
\left(a_1-c_1\right)+a_2 \left(c_1-b_1\right)+c_2
\left(b_1-a_1\right)}+a_1\\\frac{\left(b_1-c_1\right) \left(\left(a_1-b_1\right)
\left(a_1-c_1\right)+\left(a_2-b_2\right) \left(a_2-c_2\right)\right)}{b_2
\left(a_1-c_1\right)+a_2 \left(c_1-b_1\right)+c_2
\left(b_1-a_1\right)}+a_2\end{pmatrix}.}$$
Now, doing some tedious computations (thanks, Mathematica), you see that for $a_2= \frac1{a_1},b_2=\frac1{b_1}, c_2=\frac1{c_1}$, the above equals
$$\begin{pmatrix}
-\frac1{a_1 b_1 c_1}\\ -a_1 b_1 c_1
\end{pmatrix}.$$
This point lies on the hyperbola so we are done.