4

The great common divisor (gcd) of $2^{2^{22}}+1$ and $2^{{2}^{222}}+1$ is

My work,

\begin{align} F_{n}-2&= 2^{2^{n}}+1-2 \\ &=(2^{2^{n-1}}+1)(2^{2^{n-2}}+1)(2^{2^{n-2}}-1)\\ &=(2^{2^{m}}+1)(2^{2^{m}}-1)(2^{2^{m-n-1}}+1)\ \ \ [\text{ where } m \geq n] \end{align}

1 Answers1

2

This is actually a general result that $\gcd(F_n,F_m)=1$ whenever $m\neq n$

Proof: Let $\mathrm{WLOG}$ $m>n$. Then we have, $$F_m-2=(2^{2^{m-1}}-1)(2^{2^{m-1}}+1)=(2^{2^{m-1}}-1)F_{m-1}$$ Proceeding this way we get, $$F_m-2=F_{m-1}F_{m-2}\cdots F_0=MF_n$$ for some $M\in\mathbb{N}$. Therefore $\gcd(F_m,F_n)\mid2$. Since $F_m,F_n$ are odd we have $\gcd(F_m,F_n)=1$. In particular $\gcd(2^{2^{22}}+1,2^{2^{222}}+1)=1$.

Done!

ShBh
  • 6,054