This is exercise $3.5.18$ from the book How to Prove it by Velleman $($$2^{nd}$ edition$)$:
Suppose $A$ and $B$ are sets. Prove that $\forall x\Bigr(x\in A\Delta B\ \text{iff}\ (x\in A\ \text{iff}\ x\notin B)\Bigr)$.
Here is my proof:
$(\rightarrow)$ Let $x$ be an arbitrary element of $A\Delta B$. Then by definition $x\in(A\setminus B)\cup(B\setminus A)$.
$\quad$$(\rightarrow)$ Now we consider two cases.
Case $1.$ Suppose $x\in A$ and $x\in A\setminus B$. So $x\notin B$. Ergo if $x\in A$ then $x\notin B$.
Case $2.$ Suppose $x\in B$ and $x\in B\setminus A$. So $x\notin A$. Ergo if $x\in B$ then $x\notin A$. Therefore if $x\in A$ then $x\notin B$.
Since the above cases are exhaustive, if $x\in A$ then $x\notin B$. Thus if $x\in A\Delta B$ then if $x\in A$ then $x\notin B$.
$\quad$$(\leftarrow)$ Now we consider two cases.
Case $1.$ Suppose $x\notin B$ and $x\in A\setminus B$. So $x\in A$. Ergo if $x\notin B$ then $x\in A$.
Case $2.$ Suppose $x\notin A$ and $x\in B\setminus A$. So $x\in B$. Ergo if $x\notin A$ then $x\in B$. Therefore if $x\notin B$ then $x\in A$.
Since the above cases are exhaustive, if $x\notin B$ then $x\in A$. Thus if $x\in A\Delta B$ then if $x\notin B$ then $x\in A$.
Since $x$ is arbitrary, $\forall x\Bigr(x\in A\Delta B\rightarrow(x\in A\ \text{iff}\ x\notin B)\Bigr).$
$(\leftarrow)$ Let $x$ be arbitrary such that $x\in A$ iff $x\notin B$. Now we consider two cases.
Case $1.$ Suppose $x\in A\setminus B$. Therefore $x\in(A\setminus B)\cup(B\setminus A)$ and so $x\in A\Delta B$.
Case $2.$ Suppose $x\notin (A\setminus B)$. This means $x\notin A$ or $x\in B$. Now we consider two cases.
Case $2.1.$ Suppose $x\notin A$. Since $x\in A$ iff $x\notin B$, $x\in B$. Ergo $x\in B\setminus A$.
Case $2.2.$ Suppose $x\in B$. Since $x\in A$ iff $x\notin B$, $x\notin A$. Ergo $x\in B\setminus A$.
Since cases $2.1$ and $2.2$ are exhaustive, $x\in B\setminus A$. Therefore $x\in (B\setminus A)\cup(A\setminus B$) and so $x\in A\Delta B$.
Since cases $1$ and $2$ are exhaustive, $x\in A\Delta B$. Therefore if $x\in A$ iff $x\notin B$ then $x\in A\Delta B$. Since $x$ is arbitrary, $\forall x\Bigr((x\in A\ \text{iff}\ x\notin B)\rightarrow x\in A\Delta B\Bigr).$
Ergo $\forall x\Bigr(x\in A\Delta B\ \text{iff}\ (x\in A\ \text{iff}\ x\notin B)\Bigr)$. $Q.E.D.$
Is my proof valid$?$ I would also appreciate a simpler proof.
Thanks for your attention.