Some years ago, I saw a nice solution in a Chinese forum.
I do not know the original source. I translated it and
rewrote it compactly. I give it here.
Problem: Let $0 < x < \pi$ and $n$ be a positive integer. Prove that
$$\sin x+\dfrac{\sin 2x}{2}+\dfrac{\sin 3x}{3}+\ldots+ \dfrac{\sin nx}{n}>0.$$
Proof: Assume, for the sake of contradiction, that $m$ is the smallest positive integer such that
there exists $y\in (0, \pi)$ satisfying $\sum_{k=1}^m \dfrac{\sin ky}{k} \le 0$. Clearly $m \ge 2$.
Let $f(x) := \sum_{k=1}^m \dfrac{\sin kx}{k}$. Since $f(y) \le 0 = f(0) = f(\pi)$, there exists $z\in (0, \pi)$ which is a global minimizer of $f(x)$ on $[0,\pi]$ (see Remark 1 at the end).
Thus, we have $f'(z) = 0$ and $f(z) \le 0$.
We claim that $\sin m z < 0$.
Indeed, if $\sin mz \ge 0$, using $0 \ge f(z) = \sum_{k=1}^{m-1} \dfrac{\sin k z}{k} + \frac{\sin m z}{m}$,
we have $\sum_{k=1}^{m-1} \dfrac{\sin k z}{k} \le 0$.
This contradicts the smallestness of $m$.
It follows from $\sin m z < 0$ that
$\sin \frac{mz}{2} \ne 0$ and $\cos\frac{(m+1)z}{2} \ne 0$ (see Remark 2 at the end) which contradicts
$$0 = f'(z) = \sum_{k=1}^m \cos kz = \frac{\cos\frac{(m+1)z}{2}\sin \frac{mz}{2}}{\sin \frac{z}{2}}.$$
This completes the proof.
Remark 1: Let $f^\ast$ be the minimum of $f(x)$ on $[0, \pi]$.
If $f^\ast < 0$, since $f(0) = f(\pi) = 0$, the minimum of $f(x)$
on $[0, \pi]$ occurs on $(0,\pi)$.
If $f^\ast = 0$, since $f(y) \le 0$, $y$ is a global minimizer.
Remark 2:
$$\sin \frac{mz}{2} = 0 \quad \Longrightarrow\quad \sin mz = 0,$$
and
\begin{align}
\cos\frac{(m+1)z}{2} = 0\quad & \Longrightarrow \quad
\exists N\in \mathbb{Z},\ (m+1)z = (2N+1)\pi \\
&\Longrightarrow \quad
\sin mz = \sin ((2N+1)\pi - z) = \sin z \ge 0 .
\end{align}
Contradiction.