Evaluate $ \cos a \cos 2 a \cos 3 a \cdots \cos 999 a $ where $a=\frac{2 \pi}{1999}$
I know this question has already been answered many times but my doubt is different
Solution: Let $P$ denote the desired product, and let
$ Q=\sin a \sin 2 a \sin 3 a \cdots \sin 999 a $
Then $ \begin{aligned} 2^{999} P Q=&(2 \sin a \cos a)(2 \sin 2 a \cos 2 a) \cdots(2 \sin 999 a \cos 999 a) \\ =& \sin 2 a \sin 4 a \cdots \sin 1998 a \\ =&(\sin 2 a \sin 4 a \cdots \sin 998 a)[-\sin (2 \pi-1000 a)] \\ & \cdot[-\sin (2 \pi-1002 a)] \cdots[-\sin (2 \pi-1998 a)] \\ =& (\sin 2 a \sin 4 a \cdots \sin 998 a) \sin 999 a \sin 997 a \cdots \sin a=Q \end{aligned} $
how they got this last step from previous one ???