Not a duplicate of
This is exercise $3.6.5.a$ from the book How to Prove it by Velleman $($$2^{nd}$ edition$)$:
Prove that for any family of sets $\mathcal F$, $\bigcup!\mathcal F\subseteq\bigcup\mathcal F$.
I call the above statement "lemma $1$" for convenience and prove it as follows:
Let $x$ be an arbitrary element of $\bigcup!\mathcal F$. So there exists a unique set $A_0$ such that $A_0\in\mathcal F$ and $x\in A_0$. Ergo $x\in\bigcup\mathcal F$. Therefore if $x\in\bigcup!\mathcal F$ then $x\in\bigcup\mathcal F$. Since $x$ is arbitrary, $\forall x(x\in\bigcup!\mathcal F\rightarrow x\in\bigcup\mathcal F)$ and so $\bigcup!\mathcal F\subseteq\bigcup\mathcal F$. $Q.E.D.$
This is exercise $3.6.5.b$ from the book How to Prove it by Velleman $($$2^{nd}$ edition$)$:
A family of sets $\mathcal F$ is said to be pairwise disjoint if every pair of distinct elements of $\mathcal F$ are disjoint; that is, $\forall A\in\mathcal F\forall B\in\mathcal F(A\neq B\rightarrow A\cap B=\emptyset)$. Prove that for any family of sets $\mathcal F$, $\bigcup!\mathcal F=\bigcup\mathcal F$ iff $\mathcal F$ is pairwise disjoint.
Here is my proof:
$(\rightarrow)$ Suppose $\bigcup!\mathcal F=\bigcup\mathcal F$. Let $A$ and $B$ be arbitrary elements of $\mathcal F$ such that $A\neq B$. Let $x$ be an arbitrary element of $A$. From $A\in \mathcal F$ and $x\in A$, $x\in\bigcup\mathcal F$. Since $\bigcup!\mathcal F=\bigcup\mathcal F$, $x\in\bigcup!\mathcal F$. Since $x\in\bigcup!\mathcal F$, from $x\in A$ and $A\neq B$ we obtain $x\notin B$. Ergo if $x\in A$ then $x\notin B$. Since $x$ is arbitrary, $\forall x(x\in A\rightarrow x\notin B)$ and so $A\cap B=\emptyset$. Thus if $A\neq B$ then $A\cap B=\emptyset$. Since $A$ and $B$ are arbitrary, $\forall A\in\mathcal F\forall B\in\mathcal F(A\neq B\rightarrow A\cap B=\emptyset)$ and so $\mathcal F$ is pairwise disjoint. Therefore if $\bigcup!\mathcal F=\bigcup\mathcal F$ then $\mathcal F$ is pairwise disjoint.
$(\leftarrow)$ Suppose $\mathcal F$ is pairwise disjoint. This means $\forall A\in\mathcal F\forall B\in\mathcal F(A\neq B\rightarrow A\cap B=\emptyset)$. Let $x$ be an arbitrary element of $\bigcup\mathcal F$. So we can choose some $A_0$ such that $A_0\in\mathcal F$ and $x\in A_0$. Suppose $x\notin \bigcup!\mathcal F$. Now we consider two cases.
Case $1.$ Suppose $x\notin \bigcup\mathcal F$. From $x\notin \bigcup\mathcal F$ and $A_0\in\mathcal F$, $x\notin A_0$ which is a contradiction. So it must be the case that $x\in\bigcup!\mathcal F$.
Case $2.$ Suppose $A_0$ is not unique. So we can choose $B_0$ such that $A_0\neq B_0$, $B_0\in \mathcal F$, and $x\in B_0$. Since $\mathcal F$ is pairwise disjoint, then $A_0\cap B_0=\emptyset$. From $A_0\cap B_0=\emptyset$ and $x\in A_0$ we obtain $x\notin B_0$ which contradicts $x\in B_0$. So it must be the case that $x\in\bigcup!\mathcal F$.
Since the above cases are exhaustive, $x\in\bigcup!\mathcal F$. Thus if $x\in\bigcup\mathcal F$ then $x\in\bigcup!\mathcal F$. Since $x$ is arbitrary, $\forall x(x\in\bigcup\mathcal F\rightarrow x\in\bigcup!\mathcal F)$ and so $\bigcup\mathcal F\subseteq \bigcup!\mathcal F$. Therefore if $\mathcal F$ is pairwise disjoint then $\bigcup\mathcal F\subseteq \bigcup!\mathcal F$. Adding the result from lemma $1$ we obtain if $\mathcal F$ is pairwise disjoint then $\bigcup\mathcal F= \bigcup!\mathcal F$.
Ergo $\bigcup!\mathcal F=\bigcup\mathcal F$ iff $\mathcal F$ is pairwise disjoint. $Q.E.D.$
Is my proof valid $($specifically that I am using lemma $1$ in that way$)$$?$
One other question: In the above linked-post, specifically in the given answer, the contradiction is not broken into different cases. Is it OK to ignore the cases like that and take them for granted$?$
Thanks for your attention.