0

Prove that for all $x, y>0$, $\ln \left(\frac{x}{y}\right) \geqslant 4 \frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$

Is there any role for mean value theorem in the proof?, Can we use the fact $\ln (x)<\sqrt{x},~\forall x>0$

Riaz
  • 2,174

3 Answers3

2

Let us prove $$\ln u \ge 2 \frac{u-1}{u+1}, u \ge 1$$ Let $$f(u)=(u+1)\ln u-2u+2\implies f'(u)=\ln u+(u+1)/u-2=\ln u+1/u-1$$ $$\implies f''(u)=\frac{u-1}{u^2}.$$ For $u \ge 1$, $f'(u)$ is an increasing function so as $$ u \ge 1 \implies f'(u) \ge f'(0)=0.$$ This means $f(u)$ is an increasing function. Hence $$u \ge 1 \implies f(u) \ge f(1)=0$$ Let $x>y>0$ Let $u=\sqrt{x/y}\ge 1,$ so the required inequality follows.

Z Ahmed
  • 43,235
1

Hint

Define $u={x\over y}$, hence you need to prove that $$\ln u\ge 4{\sqrt u-1\over \sqrt u+1}$$for $u>0$.

Mostafa Ayaz
  • 31,924
1

Use the substitution as mentioned in the comments. Let $u=\sqrt{x/y}$. Then we have to prove that $\ln (u)-2*\frac{u-1}{u+1} \geq 0$. Let $p(u)=\ln (u)-2*\frac{u-1}{u+1}$ Then $$p(u+\delta)-p(u)=\ln \left(\frac{u+\delta}{u}\right)+\frac{2\delta}{(u+\delta+1)(u+1)} \geq 0$$. Hence $p(u)$ is an increasing function and hence greater than $0$. Please note that the condition is $u \geq 1$ or $x \geq y$.