Let $$ a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\int_{1}^{n} \frac{1}{x} d x$$ for all $n \in \mathbb{N} .$ Show that $\left(a_{n}\right)$ converges.
Actually $ a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the Reimann upper sum of $f(x)=\frac{1}{x}$ on the interval $[1,n]$ relative to a partition such that each subinterval of unit length, But I couldn't prove the convergence.
Can we use the fact $\ln (n+1) \leq 1+\frac{1}{2}+\ldots+\frac{1}{n} \leq 1+\ln n$