A closed form does not seem to exist but a very close numerical approximation could be obtained
$$\sum_{n=3}^\infty \frac{1}{n}\tan\left(\frac{\pi}{n}\right)=\frac{1}{4}+\frac{7}{6 \sqrt{3}}+\frac{\sqrt{5-2 \sqrt{5}}}{5} +\sum_{n=7}^\infty \frac{1}{n}\tan\left(\frac{\pi}{n}\right)$$ Now, we can use the Taylor expansion of the summand to $O\left(\frac{1}{n^{2p+2}}\right)$ to get things like
$$\sum_{n=7}^\infty \frac{1}{n}\tan\left(\frac{\pi}{n}\right)=\sum_{n=7}^\infty \left(\frac{\pi }{n^2}+\frac{\pi ^3}{3 n^4}+\frac{2 \pi ^5}{15 n^6}+\frac{17 \pi ^7}{315
n^8}+\frac{62 \pi ^9}{2835 n^{10}}+O\left(\frac{1}{n^{12}}\right)\right) $$ and use the fact that
$$\sum_{n=7}^\infty \frac{1}{n^{2k}}=\zeta (2 k,7)$$ where appears the Hurwitz zeta function.
The summation converges quite quickly
$$\left(
\begin{array}{cc}
10 &\color{red}{ 1.56439140145}772435482499354272938186565292861596865524537235 \\
20 &\color{red}{ 1.5643914014585097722127}2086003618544015495949712484440355570 \\
30 &\color{red}{ 1.564391401458509772212730667895116}42880289689323917105514653 \\
40 &\color{red}{ 1.56439140145850977221273066789511655725847686}518077062210715 \\
50 &\color{red}{ 1.564391401458509772212730667895116557258476866868456148}18312 \\
60 &\color{red}{ 1.56439140145850977221273066789511655725847686686845614820529}
\end{array}
\right)$$ which is not recognized by inverse symbolic calculators.
Edit
If instead of using Taylor series, we use the $[6,2]$ Padé approximant
$$\frac{1}{n}\tan\left(\frac{\pi}{n}\right)\sim\frac {\frac{\pi }{n^2}-\frac{\pi ^3}{14 n^4}-\frac{\pi ^5}{630
n^6} } {1-\frac{17 \pi ^2}{42 n^2} }=\frac{\pi ^3}{255 n^4}+\frac{269 \pi }{1445 n^2}+\frac{49392 \pi }{1445 \left(42 n^2-17 \pi ^2\right)}$$ we have
$$\sum_{n=7}^\infty \frac{1}{n^{4}}=\frac{\pi ^4}{90}-\frac{14011361}{12960000}$$
$$\sum_{n=7}^\infty \frac{1}{n^{2}}=\frac{\pi ^2}{6}-\frac{5369}{3600}$$
$$\sum_{n=7}^\infty \frac{1}{42 n^2-17 \pi ^2}=\frac{1}{34 \pi ^2}+\frac{1}{17 \pi ^2-1512}+\frac{1}{17 \pi ^2-1050}+\frac{1}{17
\pi ^2-672}+$$ $$\frac{1}{17 \pi ^2-378}+\frac{1}{17 \pi ^2-168}+\frac{1}{17 \pi
^2-42}-\frac{1}{2 \sqrt{714}}\cot \left(\sqrt{\frac{17}{42}} \pi ^2\right)$$ and all of that gives, as an approximation, a closed form which numerically is
$1.564391397$
Doing the same for the $[2p,2]$ Padé approximant, we always get closed forms and the numbers are
$$\left(
\begin{array}{cc}
p & \text{result} \\
1 & 1.5642618568560180372317 \\
2 & 1.5643907830400816846897 \\
3 & 1.5643913971007686823770 \\
4 & 1.5643914014236644621416 \\
5 & 1.5643914014582161897902 \\
6 & 1.5643914014585072339117 \\
7 & 1.5643914014585097499406 \\
8 & 1.5643914014585097720155 \\
9 & 1.5643914014585097722109 \\
10 & 1.5643914014585097722127
\end{array}
\right)$$
In all formulae, for sure, appear a term $\cot(\sqrt{a_p} \pi^2)$ where the $a_p$'s make the sequence
$$\left\{\frac{1}{3},\frac{2}{5},\frac{17}{42},\frac{62}{153},\frac{691}{1705},\frac{
10922}{26949},\frac{929569}{2293620},\frac{6404582}{15802673},\frac{221930581}{5
47591761},\frac{9444233042}{23302711005}\right\}$$