Let $h: \Bbb{R}\to \Bbb{R}$ be a Lebesgue measurable function with $\int |h| < \infty$ and define $$h^*: \Bbb{R}\to [0,\infty]: b \mapsto \sup_{t > 0} \frac{1}{2t}\int_{b-2t}^{b+2t}|h|$$
Show that $h^*$ is Borel-measurable.
Attempt: We show $\{x\in \Bbb{R}: h^*(x) > c \}$ is an open subset of $\Bbb{R}$ for all $c\in \Bbb{R}$.
If $h^*(b) > c$, then there is $\epsilon > 0$ such that $$\frac{1}{2\epsilon}\int_{b-\epsilon}^{b+\epsilon}|h| > c$$ Choose $\delta > 0$ such that $$\frac{1}{2(\epsilon+\delta)}\int_{b-\epsilon}^{b+\epsilon}|h| > c$$
If $|z-b|< \delta$, then $[z-(\epsilon+\delta), z+(\epsilon+\delta)] \supseteq [b-\epsilon, b+\epsilon]$ so $$h^*(z) \geq \frac{1}{2(\epsilon+\delta)}\int_{z-(\epsilon+\delta)}^{z+\epsilon+\delta}|h| \geq \frac{1}{2(\epsilon+\delta)}\int_{ b-\epsilon}^{b+\epsilon}|h| > c$$ so $b$ is an interior point of $\{h^* > c\}$, as desired.
Is the above correct?