1

Let $A, B \subseteq \mathbb{R}$ and $m$ is Lebesgue measure on $\mathbb{R}$ now which of following options is true?

  1. if A be uncountable then $m(A)>0$

  2. if $m(A)>0$ then $A^{\circ} \neq \varnothing$

  3. if $m(A)=0$ then $m(A^2)=0$ . (note that $A^{2}=\left\{a^{2} \mid a \in A\right\}$)

  4. $m(A+B)=m(A)+m(B)$ (note that $A+B=\{a+b \mid a \in A, b \in B\}$ )

counterexample for 1 and 4 ,$A=B= $Cantor set and for 2 ,$[0,1] \cap \mathbb{Q}^{\mathrm{c}}$. how we can proof "3" ?

1 Answers1

3

Compute\begin{align*} m(A^2) &= \int 1_{A^2}(x) \:dx \\ &= \int 1_{|A|}(\sqrt{x}) \: dx \\ &= \int_{|A|} 2u \: du \quad (\text{substitution with $u=\sqrt{x}$}) \end{align*}

and then note that $m(|A|) \leq m(A) + m(-A) = 2m(A) = 0$, so the above integral is over a set of measure $0$ and we conclude $m(A^2)=0$.