Let $A, B \subseteq \mathbb{R}$ and $m$ is Lebesgue measure on $\mathbb{R}$ now which of following options is true?
if A be uncountable then $m(A)>0$
if $m(A)>0$ then $A^{\circ} \neq \varnothing$
if $m(A)=0$ then $m(A^2)=0$ . (note that $A^{2}=\left\{a^{2} \mid a \in A\right\}$)
$m(A+B)=m(A)+m(B)$ (note that $A+B=\{a+b \mid a \in A, b \in B\}$ )
counterexample for 1 and 4 ,$A=B= $Cantor set and for 2 ,$[0,1] \cap \mathbb{Q}^{\mathrm{c}}$. how we can proof "3" ?