I want to prove without calculator that :
$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:0 \leq u - \ln(1+u) \leq u^2\:\:$ for $\:\:|u|< \frac{1}{2}$
My attempt :
$$ \psi(u)= u - \ln(1+u)$$ $$\psi'(u)= 1 - \frac{1}{1+u} = \frac{u}{1+u} $$
so $\psi$ decreasing for $u <0$ and increasing for $u >0$ and $\psi(0) =0$ so $\psi \geq 0$
For the second inequality:
$$ \phi(u)=u^2- u - \ln(1+u)$$ $$ \phi'(u)= 2u -1 + \frac{1}{1+u} = \frac{u(1+2u)}{1+u}$$
So $\phi$ is decreasing for $u<0$ and increasing for $u>0$, and $\phi(0)=0$ so $\phi \geq 0$