- $f$ is continuous from $[0,1]$ to $\mathbb{R}$, $ f \ne 0$
- $x \in [-A,A]$ , $A$ is fixed
- $u_n(x)= \prod_{k=1}^{n} \big(1 +\frac{x}{n} f(\frac{k}{n}) \big)$
- $L=\int_{0}^{1} f(z) dz$
The goal of the exercise is to find an equivalent on $n$ of $ ~~~ u_n(x) - x \int_{0}^{1} f(z) dz$
I have proved the simple convergence : $u_n(x) \underset{n \to \infty}{\to} e^{Lx}$
I have proved the uniform converge $u_n(x)$ for all $x \in [-A,A]$
Here are the $4$ steps of the exercise :
- $u_n(x)-e^{Lx} \sim e^{Lx} [ \ln (u_n(x)- Lx ] $. It is done.
- $\left| \ln(1+u) - u + \frac{u^2}{2} \right|\leq |u| ^3 $ for $| u | \leq \frac{2}{3}$ done here
- Show that there is a intercept $D$ such that : $$ \ln(u_n(x)) -Lx = x \lbrack \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) - L \rbrack - \frac{x^2}{2 n^2} \sum_{k=1}^{n} f^2(\frac{k}{n}) + D \frac{ \mid x \mid ^3 }{n^2}$$
- Find an equivalent of $\frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) - L$. I asked the question here
- Deduce the equivalent of $ u_n(x) -Lx$
The step $4$ seems false, but can we prove the step 3 ? Thanks