Evaluate : $\lim_{n\to \infty}\{(1+\frac{1}{2n})(1+\frac{3}{2n})(1+\frac{5}{2n})\cdots (1+\frac{2n-1}{2n})\}^{\frac{1}{2n}}$
My attempt : Since, [$\displaystyle \lim\limits_{n\to \infty} a_n^{1/n} = \lim\limits_{n\to \infty} \frac{a_{n+1}}{a_n}$] $$Here \ \ a_n = \prod\limits_{k=1}^{n} \left(1+\frac{2k-1}{2n}\right) $$ I got $$\frac{ a_{n+1}}{a_n}=\frac{(4n+1)(4n+3)}{(2n+1)(2n+2)\times (1+\frac{1}{n})^n}$$ $$\ Hence, \ \lim\limits _{n\to \infty} {\frac {a_{n+1}}{a_n}}=\frac{4}{e} $$
My question is can I still use Cauchy's second theorem if the power of the function is $\frac{1}{2n}$? Caused I've solved it same as the power $\frac{1}{n}$. Please help me for this. Thank you in advance.