Let's assume that $\tan(x) = y$.
So, $\tan\Big(x+\dfrac{\pi}{3}\Big) = \dfrac{\tan(x) + \tan\Big(\dfrac{\pi}{3}\Big)}{1-\tan(x)\tan\Big(\dfrac{\pi}{3}\Big)} = \dfrac{y+\sqrt{3}}{1-\sqrt{3}y}$
Similarly, $\tan\Big(x-\dfrac{\pi}{3}\Big) = \dfrac{y-\sqrt{3}}{1+\sqrt{3}y}$
Also, $\tan\Big(\dfrac{\pi}{3}-x\Big) = -\tan\Big(x-\dfrac{\pi}{3}\Big) = \dfrac{\sqrt{3}-y}{1+\sqrt{3}y}$
Now, $\tan(x)\tan\Big(x+\dfrac{\pi}{3}\Big)+\tan(x)\tan\Big(\dfrac{\pi}{3}-x\Big)+\tan\Big(x+\dfrac{\pi}{3}\Big)\tan\Big(x-\dfrac{\pi}{3}\Big)$ $$ = y\Big(\dfrac{y+\sqrt{3}}{1-\sqrt{3}y}\Big)+y\Big(\dfrac{\sqrt{3}-y}{1+\sqrt{3}y}\Big)+\Big(\dfrac{y+\sqrt{3}}{1-\sqrt{3}y}\Big)\Big(\dfrac{y-\sqrt{3}}{1+\sqrt{3}y}\Big)$$ $$ = y\Big(\dfrac{(y+\sqrt{3})(1+\sqrt{3}y)+(1-\sqrt{3}y)(\sqrt{3}-y)}{1-3y^2}\Big)+\Big(\dfrac{y^2-3}{1-3y^2}\Big)$$ $$ = y\Big(\dfrac{y+\sqrt{3}y^2+\sqrt{3}+3y+\sqrt{3}-y-3y+\sqrt{3}y^2}{1-3y^2}\Big)+\Big(\dfrac{y^2-3}{1-3y^2}\Big)$$ $$ = \dfrac{2\sqrt{3}y+2\sqrt{3}y^3+y^2-3}{1-3y^2}$$
This is how much I've been able to simplify the expression but I'm unable to continue. I am familiar with the values of trigonometric functions at multiples and sub multiples of angles and I think the solution would involve their use (as the question has been taken from that very chapter).
Thanks!