Prove by mathematical induction on the size of matrix A that
$\begin{equation} \begin{aligned} &\operatorname{If} M \in M_{n \times n}(K) \text { and } A \text { y } B \text { are square } M=\left[\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right] \text { then }\\ &\det (M)=\det(A)\det(B) \end{aligned} \end{equation}$
I try this
If A is a Matrix $1\times1$ then $\det(M)=\det(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix})=a_1\det(B)=\det(A)*\det(B)$
If A is a Matrix $2\times2$ then $\det(M)=\det(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix})=a_1\det(\begin{bmatrix} A_{11} & 0 \\ 0 & B \end{bmatrix})+(-1)^{3}a_2\det(\begin{bmatrix} A_{12} & 0 \\ 0 & B \end{bmatrix})=a_1a_4\det(B)-a_2a_3\det(B)=\det(B)(a_1a_4-a_2a_3)=\det(B)\det(A)$
Then I suppose is true for a matrix $n\times n$ with a matrix $A_{s\times s}$ and this is where I'm stuck to prove it is valid for a matrix $A_{s+1\times s+1}$