$$4+4i=4\sqrt2\left(\cos\frac\pi4+i\sin\frac\pi4\right)=(\sqrt2)^4\sqrt2e^{i\frac\pi4}$$ (using Euler's Identity)
$$\implies 4+4i=(\sqrt2)^5e^{2ni\pi+\frac{i\pi}4}=(\sqrt2)^5e^{\frac{i(8n+1)\pi}4}$$ where $n$ is any integer
So, $$(4+4i)^\frac15=\sqrt2e^{\frac{(8n+1)i\pi}{20}}=\sqrt2\left(\cos \frac{(8n+1)\pi}{20}+i\sin \frac{(8n+1)\pi}{20}\right)$$ where $0\le n\le 4$
Please find the explanation here regarding the values of $n$
We need $\sqrt2$ at the denominator of $\cos,\sin$ to make $p,q$ integers
Trying with $n=0,1,2,3,4$ we find
for $n=3,\cos \frac{(8n+1)\pi}{20}+i\sin \frac{(8n+1)\pi}{20}$ becomes $\cos \frac{25\pi}{20}+i\sin \frac{25\pi}{20}=-\frac{1+i}{\sqrt2}$
$\implies$ one of the vaues of $(4+4i)^\frac15$ is $\sqrt2\left(-\frac{1+i}{\sqrt2}\right)=-(1+i)$