2

I have to find the following limit but I don't know where to begin with.

$$\lim_{n\to\infty}\frac{n^k\;(k+1)!\;(n-(k+1))!}{n!}$$ for any fixed $k$.

Any hints or suggestions would help me a lot. I think sandwich rule will be useful, but I cannot think of a suitable expression.

Blue
  • 75,673

2 Answers2

1

If I've counted all my $n$'s correctly here, we will have:

$$\begin{array}{rcl}\lim_{n\to\infty}\frac{(n^k)(k+1)!(n-(k+1))!}{(n)!}&=&(k+1)!\lim_{n\to\infty}\frac{1}{n}\frac{n^{k+1}(n-(k+1))!}{n!}\\&=&(k+1)!\lim_{n\to\infty}\frac{1}{n}\times\frac{n}{n}\frac{n}{n-1}\cdots\frac{n}{n-k}\\&=&0\end{array}$$

because all terms $\frac{n}{n-i}\to 1$ but $\frac{1}{n}\to 0$ as $n\to\infty$.

1

We have that

$$\frac{(n^k)(k+1)!(n-(k+1))!}{(n)!}=\frac{n^k}{\binom{n}{k+1}} \to 0$$

indeed by this result $\binom{n}{k+1}=\frac{n^{k+1}}{(k+1)!}+O(n^{k})$ then

$$\frac{n^k}{\binom{n}{k+1}}=\frac{n^k}{\frac{n^{k+1}}{(k+1)!}+O(n^{k})}=\frac{1}{\frac{n}{(k+1)!}+O(1)}\to 0$$

user
  • 154,566