Let $f,g:[a,\infty] \to \mathbb{R}$ s.t $\int_a^{\infty}f(t)dt$ converges, and $g$ is bounded and monotonic. Then $\int_a^{\infty}f(t)g(t)dt$ converges.
My idea: $g$ is monotonic thus integrable on $[a, x] \forall x$, and $f$ is also integrable, so $f(t)g(t)$ is integrable on $[a, x] \forall x$.
$g$ is monotnic and bounded thus $\lim_{x \to \infty}g(x) = L \in \mathbb{R}$, thus there exists $M>0$ s.t $\forall x>M, L-1 \leq g(x) \leq L+1$.
choosing some $b>M$ we get: $\int_b^{x}f(t)(L-1)dt \leq \int_b^{x}f(t)g(t)dt \leq \int_b^{x}f(t)(L+1)dt$
Taking $x \to \infty$, the left and right expressions converge because $\int_b^{\infty}f(t)dt$ converges, thus $\int_b^{\infty}f(t)g(t)dt$ converges.
Also, $\int_a^{b}f(t)g(t)dt$ obviously converges, so we get $\int_a^{\infty}f(t)g(t)dt$ converges.
Other proofs I saw usually used mean-value theorem so I wanna make sure I'm not missing something, thanks
since the far right-hand side and far left-hand sides are unequal.
– RRL Sep 14 '20 at 18:28