Problem. Suppose we have
$$u_t + uu_x = 0, ~~~~~~~~u(x,0) = \begin{cases} x + 1, & x < 0, \\ x + 2, & x > 0. \end{cases} $$
What I have: We have the usual solution by method of characteristics to start: $u(x,t) = \phi(x - ut)$, and characteristics
$$ x = \phi(r)t + r, ~~~~~~~~z = \phi(r).$$
Using the initial data we get the following implicit solution $$ u(x,t) = \begin{cases} \frac{x + 1}{1 + t}, &x < t \tag{1} \\ \frac{x + 2}{1 + t}, &x > 2t. \end{cases} $$
We can plot the characteristics more easily using our parameterization with $r$ such that $$x(t,r) = \begin{cases} (r + 1)t + r, &r < 0 \\ (r + 2)t + r, &r > 0, \\ \end{cases} $$
Hence, we have a region where there are no characteristics emulating from the origin (0,0).
For these, I recall that rarefaction solution is given as $u(x,t) = f\left(\frac{x-r}{t}\right)$, for some $f$. Hence, we have $$\begin{align} u_t &= f'\left(\frac{x - r}{t}\right)\left(\frac{r - x}{t^2}\right) \\ u_x &= f'\left(\frac{x - r}{t}\right)\left(\frac{1}{t}\right), \end{align} $$
and we need to find some $f$ that satisfies $$ f'\left(\frac{x - r}{t}\right)\left(\frac{r - x}{t^2}\right) + f\left(\frac{x-r}{t}\right)f'\left(\frac{x - r}{t}\right)\left(\frac{1}{t}\right) = 0. \tag{2}$$
So, $f\left(\frac{x-r}{t}\right) = \frac{x - r}{t}$, and $(2)$ is satisfied.
I'm not sure on how to proceed from here though?