$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\bbox[5px,#ffd]{\lim_{n \to \infty}
\int_{0}^{1}{nx^{n - 1} \over 1 + x}\,\dd x = {1 \over 2}}:
\ {\Large ?}}$.
The integral can be evaluated, in the
$\ds{n \to \infty}$-limit by means of the Laplace Method. Note that the "main contribution" to the integral comes from values of $\ds{x \lesssim 1}$ such that we make the change $\ds{x \mapsto 1 - x}$ to enforce the "main contribution" around $\ds{x \gtrsim 0}$. Namely,
\begin{align}
&\bbox[5px,#ffd]{\lim_{n \to \infty}
\int_{0}^{1}{nx^{n - 1} \over 1 + x}\,\dd x} =
\lim_{n \to \infty}\bracks{%
n\int_{0}^{1}{\pars{1 - x}^{n - 1} \over
1 + \pars{1 - x}}\,\dd x}
\\[5mm] = &
\lim_{n \to \infty}\bracks{%
n\int_{0}^{1}{\expo{\pars{n-1}\ln\pars{1 - x}} \over
2 - x}\,\dd x} =
\lim_{n \to \infty}\bracks{%
n\int_{0}^{\infty}{\expo{-\pars{n-1}x} \over
2 - 0}\,\dd x}
\\[5mm] = &\
{1 \over 2}\lim_{n \to \infty}{n \over n - 1} =
\bbx{\large{1 \over 2}} \\ &
\end{align}