$\sum_{r=0}^n C(n-1,r-1)$ = C(n-1,-1) + C(n-1,0) + C(n-1,1)+....+ C(n-1,n-1)
How is the 1st term valid i.e C(n-1,-1). If the 1st term is invalid, then $\sum_{r=0}^n C(n-1,r-1)$ is also invalid. Isn't it? Please explain.
But I know if I take C(n,r) = C(n-1,r) + C(n-1,r-1)
S0, C(n-1,r-1) = C(n,r) - C(n-1,r)
Hence $\sum_{r=0}^n C(n-1,r-1)$ = $\sum_{r=0}^n C(n,r)$ - $\sum_{r=0}^n C(n-1,r)$, which equals to $2^{n-1}$. How is this possible?