I am trying to show the following:
Given that $|b-c| \leq a \leq b+c$ show that: $$\frac{a}{1+a} \leq \frac{b}{1+b} + \frac{c}{1+c}$$
So far I have done the following:
$a/(1+a) \leq b/(1+b) + c/(1+c) \iff$
$1-1/(1+a) \leq 2 - 1/(1+b) -1/(1+c) \iff$
$1/(1+b) -1/(1+c) \leq 1 + 1/(1+a) \iff$
$ (2+b+c)/(1+b)(1+c) \leq (2+a)/(1+a) \iff$
$ (2+b+c)(1+a) \leq (2+a)(1+b)(1+c) \iff$
$ a \leq bc(2+a)$
I am not really sure how to proceed from here- any help or hints would be much appreciated.