if $x^5=1$ with $x\neq 1$ then find value of $$\frac{x}{1+x^2}+\frac{x^2}{1+x^4}+\frac{x^3}{1+x}+\frac{x^4}{1+x^3}$$
So my first observation was x is a non real fifth root of unity. Also $$x^5-1=(x-1)(1+x+x^2+x^3+x^4)=0$$
Thus $$1+x+x^2+x^3+x^4=0$$ I tried using this condition to simplify the above expression but nothing interesting simplified. Please note i am looking for hints rather than complete solutions.
EDIT:I came to know its a duplicate ,but i feel that the answers given below are different from those in the original.