Recall first the basic knowledga about the geodesic theory.
Let $(M, g)$ be a riemannian manifold of dimension $m,$ with metric $$ g(x)=\sum g_{j k}(x) d x_{j} \otimes d x_{k}, \quad 1 \leqslant j, k \leqslant m $$ The length of a path $\gamma:[a, b] \longrightarrow M$ is by definition $$ \ell(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right|_{g} d t=\int_{a}^{b}\left(\sum_{j, k} g_{j k}(\gamma(t)) \gamma_{j}^{\prime}(t) \gamma_{k}^{\prime}(t)\right)^{1 / 2} d t $$ The geodesic distance of two points $x, y \in M$ is $\delta(x, y)=\inf _{\gamma} \ell(\gamma) \quad$ over paths $\gamma$ with $\gamma(a)=x, \quad \gamma(b)=y$ if $x, y$ are in the same connected component of $M, \delta(x, y)=+\infty$ otherwise.
Of course, $$ \text {all closed geodesic balls } \overline{B\left(x_{0}, r\right)} \text { are compact,} $$ by the Hopf-Rinow.
Question:Can $\{B(x_0,k)\}_k$ exhaust one complete Riemannian manifold? i.e.,Does $\bigcup_k B(x_0,k)=X$ and $\overline{B\left(x_{0}, k\right)}\subset {B\left(x_{0}, k+1\right)}$ hold?