1

Can you help me to prove the following formula $$ \frac{\sin (\pi x )}{\pi x} = \prod\limits_{n \geq 1} \left(1 - \frac{x^2}{n^2}\right) ? $$

Thank you so much!

Kenta S
  • 16,151
  • 15
  • 26
  • 53

1 Answers1

4

Quick proof (not giving the details as you can find them in any textbook talking about the subject) : $$ \forall z\in\mathbb{C},\left(1+\frac{iz}{2p+1}\right)^{2p+1}-\left(1-\frac{iz}{2p+1}\right)^{2p+1}=2iz\prod_{k=1}^p\left(1-\frac{z^2}{(2p+1)^2\tan^2\left(\frac{k\pi}{2p+1}\right)}\right) $$ Taking the limit as $p\rightarrow +\infty$ gives $$ e^{iz}-e^{-iz}=2iz\prod_{k\geqslant 1}\left(1-\frac{z^2}{k^2\pi^2}\right) $$ and thus $\displaystyle \frac{\sin(z)}{z}=\prod_{k\geqslant 1}\left(1-\frac{z^2}{k^2\pi^2}\right)$.

Tuvasbien
  • 8,907