I'm having a really hard time on how to prove this using mathematical induction: For all real $x>-1$, $(1+x)^n\geq 1+nx$.
Edit: (Solution with the help of comments and answer below)
If $x>-1$ then $1+x>0$
Base case $n=1$: $(1+x)^1\ge 1+x$.
Induction Assumption: Assume that works for any $k\geq 1$, $(1+x)^k\geq 1+kx$
Inductive step: Show that $(1+x)^{k+1} \geq 1+(k+1)x$
$(1+x)^k\geq 1+kx$
Multiply $(1+x)$ on both sides:
$(1+x)(1+x)^k\ge (1+x)(1+kx)$
$(1+x)(1+x)^k\ge 1+kx+x+kx^2$
$(1+x)^{k+1}\ge1+(k+1)x+kx^2$
Since $kx^2\ge0$
$(1+x)^{k+1}\ge1+(k+1)x$