Claim
Let $0.5\leq x<1$ and $n\geq 2$ a natural number then we have : $$(1-x)^{(2x)^n}+x^{(2(1-x))^n}\leq 1\quad (I)$$
Sketch\Partial (of) proof .
We use a form of the Young's inequality or weighted Am-Gm :
Let $a,b>0$ and $0<v<1$ then we have :
$$av+b(1-v)\geq a^vb^{1-v}$$
Taking account of this theorem and putting :
$a=x^{(2(1-x))^{n-1}}$$\quad$$b=1$$\quad$$v=2(1-x)$ we get $0.5\leq x<1$:
$$x^{(2(1-x))^n}\leq x^{(2(1-x))^{n-1}}2(1-x)+1-2(1-x)$$
Now the idea is to show :
Let $$(1-x)^{(2x)^n}\leq 1-\Big(x^{(2(1-x))^{n-1}}2(1-x)+1-2(1-x)\Big)$$
Or :
$$(1-x)^{(2x)^n}\leq2(1-x)(1-x^{(2(1-x))^{n-1}})$$
Or: $$(1-x)^{(2x)^n-1}+2x^{(2(1-x))^{n-1}}\leq 2\quad (0)$$
Now we want to show that :
$$(1-x)^{(2x)^n-1}\leq 2(1-x)^{(2x)^{n-1}}\quad(1)$$
For that we need a lemma :
Lemma :
Let $0.5\leq x<1$ and $n\geq 2$ a natural number then we have :
$$f(n)=\ln(1-x)((2x)^n-1-(2x)^{n-1})\leq f(n-1)=\ln(1-x)((2x)^{n-1}-1-(2x)^{n-2})$$
It's true because it's equivalent to :
$$(2x)^{n-2}(2x-1)^2\geq 0$$
So we have :
$$f(n)\leq f(2)$$
We can show also that on $[0.61,1)$ :
$$f(n)\leq f(2)\leq \ln(2)$$
Wich is equivalent to $(1)$
So we have from $(1)$ and $(0)$ we need to show :
$$2x^{(2(1-x))^{n-1}}+2(1-x)^{(2x)^{n-1}}\leq 2$$
Or :
$$x^{(2(1-x))^{n-1}}+(1-x)^{(2x)^{n-1}}\leq 1$$
So now we can use induction to prove $(I)$.
My questions :
It is good ?
How to write the proof properly using induction on the interval $[0.61,1)$ ?
Thanks in advance
Max