If there exists $\;\lim\limits_{x\to c}\sqrt{f(x)}\;,\;$ then there exists $\;\lim\limits_{x\to c} f(x)\;.$
If it is true, prove it. If it false, give a counterexample.
Could you also do the converse?
Any help would be appreciate.
If there exists $\;\lim\limits_{x\to c}\sqrt{f(x)}\;,\;$ then there exists $\;\lim\limits_{x\to c} f(x)\;.$
If it is true, prove it. If it false, give a counterexample.
Could you also do the converse?
Any help would be appreciate.
There is a general theorem for the algebra of limits that
$$\lim_{x\to c}(F(x)G(x))=\left(\lim_{x\to c}F(x)\right)\left(\lim_{x\to c}G(x)\right)$$
if both limits on the right hand side exist. Letting $F(x)=G(x)=\sqrt{f(x)}$, we get
$$\lim_{x\to c}f(x)=\left(\lim_{x\to c}\sqrt{f(x)}\right)^2$$
In particular, the limit exists.
According to the more general definition of limit that is
$$\lim_{x\rightarrow c} f(x) = L \iff \forall \varepsilon >0\, \exists \delta > 0: \forall x\in D\quad 0<\vert x-c\vert <\delta \implies \vert f(x)-L\vert <\varepsilon $$
we have that for $f(x)=\operatorname{sign} (x-c)$
$$\lim\limits_{x\to c}\sqrt{f(x)} =1 \quad \lim\limits_{x\to c}f(x)=N.E.$$
What is always true independently from the definition is that
$$\lim\limits_{x\to c}\sqrt{f(x)} =L \implies \lim\limits_{x\to c}\left|f(x)\right|=L^2$$
Refer also to the related
Let $\;a,\;b,\;c\in\mathbb{R}\;$ such that $\;a<c<b\;.$
Let $\;f(x):(a,b)\to\mathbb{R}\;$ be a function such that
$f(x)\ge0\;$ for all $\;x\in(a,b)\;.$
If there exists $\;\lim\limits_{x\to c}\sqrt{f(x)}=l\in\mathbb{R}\;,\;$ then
$\lim\limits_{x\to c} f(x)=\lim\limits_{x\to c}\left[\sqrt{f(x)}\cdot\sqrt{f(x)}\;\right]=\\\qquad\quad=\lim\limits_{x\to c}\sqrt{f(x)}\cdot\lim\limits_{x\to c}\sqrt{f(x)}=l^2\;.$
Conversely, if there exists $\;\lim\limits_{x\to c}f(x)=l\in\mathbb{R}\;,\;$ then $\;l\ge0.$
If $\;l=0\;,\;$ then $\;\lim\limits_{x\to c}\sqrt{f(x)}=0\;,\;$ indeed
$0\le f(x)<\epsilon^2\implies 0\le\sqrt{f(x)}<\epsilon\;.$
If $\;l>0\;,\;$ then $\;\lim\limits_{x\to c}\sqrt{f(x)}=\sqrt{l}\;,\;$ indeed
$0\le l-\epsilon^2<f(x)<l+\epsilon^2\implies\\\implies\sqrt{l}-\epsilon\le\sqrt{l-\epsilon^2}<\sqrt{f(x)}<\sqrt{l+\epsilon^2}\le\sqrt{l}+\epsilon\;.$