I would like to prove the following inequality (upper bound):
\begin{align} \xi(n) = \sum_{j=1}^{n}(-1)^{j-1}{n \choose j}\frac{1}{j} \leq 3\ln(n), \end{align}
for $n\geq 2$. I have made an attempt to prove this using induction, i.e.
$(n=2):$ \begin{align} (-1)^{0}{2 \choose 1}\frac{1}{1} + (-1)^{1}{2 \choose 2}\frac{1}{2} = \frac{3}{2} \leq 3\ln(2). \end{align}
Assume $(n)$ holds and show $(n+1)$ holds: \begin{align} \xi(n+1) = \sum_{j=1}^{n+1}(-1)^{j-1}{n+1 \choose j}\frac{1}{j} &= (-1)^n\frac{1}{n+1} + \sum_{j=1}^{n}(-1)^{j-1}{n+1 \choose j}\frac{1}{j}\\ &= (-1)^n\frac{1}{n+1} + \sum_{j=1}^{n}(-1)^{j-1}\left[{n\choose j}+{n \choose j-1}\right]\frac{1}{j}\\ &= (-1)^n\frac{1}{n+1} + \sum_{j=1}^{n}(-1)^{j-1}{n\choose j}\frac{1}{j} + \sum_{j=1}^{n}(-1)^{j-1}{n \choose j-1}\frac{1}{j}.\\ &= (-1)^n\frac{1}{n+1} + \xi(n) + \sum_{j=1}^{n}(-1)^{j-1}{n \choose j-1}\frac{1}{j}.\\ \end{align}
Now I cannot figure out how \begin{align} (-1)^n\frac{1}{n+1} + \sum_{j=1}^{n}(-1)^{j-1}{n \choose j-1}\frac{1}{j} \leq 3\ln\left(1+\frac{1}{n}\right). \end{align}
Which is the missing part in this proof. Maybe I am on the wrong track. Any help is really appreciated.