There are some "traps" to avoid in the process to get an answer to your question,
so allow me to proceed by elementary steps.
Suppose you have $n$ labeled balls $\left\{ {1,2, \cdots ,n} \right\}$ and
$m$ boxes in a row (we do not say yet if distinguishable or not) with capacity
$$
\left[ {c_1 ,c_2 , \cdots ,c_m } \right]\quad \left| \matrix{
\;0 \le c_j \hfill \cr
\;c_1 + c_2 + \cdots + c_m = c \hfill \cr} \right.
$$
summing to $c$, where some of the capacities might be null
To totally fill those boxes, with distinct balls and distinguishing the order in which they are placed, we have:
$$n\left( {n - 1} \right) \cdots \left( {n - \left( {c_{\,1} - 1} \right)} \right) = n^{\,\underline {\,c_{\,1} \,} } $$ choices for the first,
$$\left( {n - c_{\,1} } \right)\left( {n - c_{\,1} - 1} \right) \cdots \left( {n - \left( {c_{\,1} + c_{\,2} - 1} \right)}
\right) = \left( {n - c_{\,1} } \right)^{\,\underline {\,c_{\,2} \,} }$$ for the second, and so forth, and thus
$$ \bbox[lightyellow] {
\eqalign{
& n^{\,\underline {\,c_{\,1} \,} } \left( {n - c_{\,1} } \right)^{\,\underline {\,c_{\,2} \,} }
\cdots \left( {n - \left( {c_{\,1} + \cdots + c_{\,m - 1} } \right)} \right)^{\,\underline {\,c_{\,m} \,} } = \cr
& = n^{\,\underline {\,c\,} } = \left( \matrix{ n \cr c \cr} \right)c! \cr}
}$$
in total. Clearly we cannot wholly fill the boxes if $n < c$.
That corresponds to choose a subset of $c$ balls out of $n$, permute it, separate and lay into the boxes.
From now on we can leave out the factor $\binom{n}{c}$ and assume $n=c$.
a) Now if the boxes are distinct and not limited in capacity, the balls are distinct, and their placing inside a box is distinct,
then the above multiplied by the number of weak/strong compositions
of $n$ into $m$ parts, i.e.
$$ \bbox[lightyellow] {
\eqalign{
& N_{LL} (n,m) = \left( \matrix{ n + m - 1 \cr n \cr} \right)n!
= m^{\,\overline {\,n\,} } \cr
& L_{LL} (n,m) = \left( \matrix{ n - 1 \cr n - m \cr} \right)n! \cr
& N_{LL} (n,m) = \sum\limits_k {\left( \matrix{ m \cr k \cr} \right)L_{LL} (n,k)} \cr}
} \tag{a}$$
give the number of ways to fill the boxes with ($N$) or without ($L$) empty boxes, with $n$ balls.
We are speaking of partitioning the $n$ distinct balls into a list of $m$ lists
$$
\left[ {\underbrace {\left[ {\matrix{ 2 \cr 5 \cr } } \right],
\left[ 1 \right],\left[ \emptyset \right],\left[ {\matrix{ 4 \cr 6 \cr 3 \cr } } \right],
\cdots ,\left[ {\matrix{ \vdots \cr \vdots \cr
} } \right]}_{m\,{\rm lists}}} \right]
$$
b) If instead the placing of the balls in each box is undistinct, i.e. if upon placing a batch of balls inside a box they are
re-ordered by label, then we are speaking of a list of sets
$$
\left[ {\underbrace {\left\{ {\matrix{ 5 \cr 2 \cr } } \right\},
\left\{ 1 \right\},\left\{ \emptyset \right\},
\left\{ {\matrix{ 6 \cr 4 \cr 3 \cr } } \right\},
\cdots ,\left\{ {\matrix{ \vdots \cr \vdots \cr } } \right\}}
_{m\,{\rm sets}}} \right]
$$
Therefore in the filling process, upon picking each batch $c_k$ we shall de-permute it, that is
$$
\eqalign{
& {{n^{\,\underline {\,c_{\,1} \,} } } \over {\,c_{\,1} !}}
{{\left( {n - c_{\,1} } \right)^{\,\underline {\,c_{\,2} \,} } } \over {c_{\,2} !}} \cdots
{{\left( {n - \left( {c_{\,1} + \cdots + c_{\,m - 1} } \right)} \right)^{\,\underline {\,c_{\,m} \,} } }
\over {\,c_{\,m} \,!}} = \cr
& = {{n^{\,\underline {\,n\,} } } \over {\,c_{\,1} !c_{\,2} !\, \cdots c_{\,m} \,!}}
= \left( \matrix{ n \cr c_{\,1} ,c_{\,2} ,\, \cdots ,c_{\,m} \cr} \right) \cr}
$$
and sum over the compositions on $n$ into $m$ parts to get
$$ \bbox[lightyellow] {
\eqalign{
& L_{LS} (n,m) = \sum\limits_{\left\{ {\matrix{ {1\, \le \,c_{\,k} \,\left( { \le \,n} \right)} \cr
{c_{\,1} + \,c_{\,2} + \cdots \, + c_{\,m} \, = \,n} \cr } } \right.}
{\;\left( \matrix{ n \cr c_{\,1} ,\,c_{\,2} , \cdots \,,c_{\,m} \, \cr} \right)} \cr
& N_{LS} (n,m) = \sum\limits_{\left\{ {\matrix{ {0\, \le \,c_{\,k} \,\left( { \le \,n} \right)} \cr
{c_{\,1} + \,c_{\,2} + \cdots \, + c_{\,m} \, = \,n} \cr } } \right.}
{\;\left( \matrix{ n \cr c_{\,1} ,\,c_{\,2} , \cdots \,,c_{\,m} \, \cr} \right)} = n^{\,m} = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)}
{\left( \matrix{ m \cr j \cr} \right)\sum\limits_{\left\{ {\matrix{
{1\, \le \,c_{\,k} \,\left( { \le \,n} \right)} \cr
{c_{\,1} + \,c_{\,2} + \cdots \, + c_{\,j} \, = \,n} \cr } } \right.}
{\;\left( \matrix{ n \cr c_{\,1} ,\,c_{\,2} , \cdots \,,c_{\,j} \, \cr} \right)} } = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)}
{\left( \matrix{ m \cr j \cr} \right)L_{LS} (n,m)} \cr}
} \tag{b}$$
That is the same if we sequentially launch distinct or undistinct balls into distinct boxes,
because the balls landing in a box will be ordered according to the launching sequence.
c) If in the above the boxes are undistinct , then for those non-empty, which are all distinct by content, we
will get a partition into set of sets which is $1/(m!)$ of the above and which by definition is counted by the Stirling N. 2nd kind.
The empty boxes will be grouped at the beginning, so
$$
\left\{ {\underbrace {\left\{ \emptyset \right\}, \cdots ,\left\{ \emptyset \right\},
\left\{ 1 \right\},\left\{ {\matrix{ 5 \cr 2 \cr } } \right\},
\left\{ {\matrix{ 6 \cr 4 \cr 3 \cr } } \right\},
\cdots }_{m\,{\rm sets}}} \right\}
$$
and
$$ \bbox[lightyellow] {
\eqalign{
& L_{SS} (n,m) = \left\{ \matrix{ n \cr m \cr} \right\}
= {1 \over {m!}}\sum\limits_{\left\{ {\matrix{ {1\, \le \,c_{\,k} \,\left( { \le \,n} \right)} \cr
{c_{\,1} + \,c_{\,2} + \cdots \, + c_{\,m} \, = \,n} \cr } } \right.}
{\;\left( \matrix{ n \cr c_{\,1} ,\,c_{\,2} , \cdots \,,c_{\,m} \, \cr} \right)} \cr
& N_{SS} (n,m) = \sum\limits_{j = 0}^m {L_{SS} (n,j)}
= \sum\limits_{j = 0}^m {\left\{ \matrix{ n \cr j \cr} \right\}} \cr}
} \tag{c}$$
d) Finally, if the boxes are un-distinct, the balls are distinct, and their placing inside a box is distinct
we have a set of lists
$$
\left\{ {\underbrace {\left[ \emptyset \right], \cdots ,\left[ \emptyset \right],
\left[ 1 \right],\left[ {\matrix{ 2 \cr 5 \cr } } \right],
\left[ {\matrix{ 4 \cr 6 \cr 3 \cr } } \right], \cdots }
_{m\,{\rm lists}}} \right\}
$$
and the number of non-empty boxes will be $1/(m!)$ of that in a), i.e.
$$ \bbox[lightyellow] {
\eqalign{
& L_{SL} (n,m) = \left( \matrix{ n - 1 \cr n - m \cr} \right){{n!} \over {m!}}
= {\rm Lah}\;{\rm N}{\rm .} \cr
& N_{SL} (n,m) = \sum\limits_{j = 0}^m {L_{SL} (n,j)}
= \sum\limits_{j = 0}^m {\left( \matrix{ n - 1 \cr n - j \cr} \right)
{{n!} \over {j!}}} \cr}
} \tag{d}$$
In conclusion, the answer to your question will be d) or c) depending on whether you are considering or not the
order of the balls inside each box, otherwise said if you "pour" or "launch" the balls into the boxes.