Claim
Prove that [1]:
Let $0<x\leq 0.5$ and $k\geq 1$ a real number then we have :
$$h(k)=(1-x)^{(2x)^k}+x^{(2(1-x))^k}\leq 1$$
Sketch of proof :
The case $k\geq 1+\alpha$ :
We define $\alpha$ as :
$$\lim_{x\to 0.5^-}=\frac{\ln\Big(2(2^{2x}x^2(1-x)2)\Big)}{\ln(2x)}=\frac{\ln\Big(2(1-(2^{2x}x^2(1-x)2))\Big)}{\ln(2(1-x))}=\alpha=1.69315\cdots$$
We have :
$$x^{2(1-x)}\leq2^{2x}(1-x)2x^2$$
And :
$$(1-x)^{2x}\leq 1-2^{2x}(1-x)2x^2$$
For a sketch of proof see Refinements of the inequality $f(x)=x^{2(1-x)}+(1-x)^{2x}\leq 1$ for $0<x<0.5$
So we have :
$$x^{(2(1-x))^k}\leq f(x)^{(2(1-x))^{k-1}}=(2^{2x}(1-x)2x^2)^{(2(1-x))^{k-1}}$$
And :
$$(1-x)^{(2x)^k}\leq (1-2^{2x}(1-x)2x^2)^{(2x)^{k-1}}$$
Now we want $y\geq 1$ a real number :
$$(2x)^{k-1}\geq (2f(x))^{y}$$ And $$(2(1-x))^{k-1}\geq (2(1-f(x)))^{y}$$
Solving this we have
$$\frac{\ln\Big(2(1-(2^{2x}x^2(1-x)2))\Big)}{\ln(2(1-x))}\leq \frac{k-1}{y}\leq \frac{\ln\Big(2(2^{2x}x^2(1-x)2)\Big)}{\ln(2x)}\quad (1)$$
The constraint $(1)$ is honoured if :$$\alpha=\frac{k-1}{y}$$
So we have :
$$x^{(2(1-x))^k}\leq (f(x))^{(2(1-f(x))^{\frac{k-1}{\alpha}} }\quad (2)$$
And :
$$(1-x)^{(2x)^k}\leq (1-f(x))^{(2f(x))^{\frac{k-1}{\alpha}}}\quad (3)$$
Adding $(2)$ and $(3)$ we have :
$$h(k)\leq (1-f(x))^{(2f(x))^{\frac{k-1}{\alpha}}}+(f(x))^{(2(1-f(x))^{\frac{k-1}{\alpha}}}$$
We can repeat the reasoning $p$ times ($p\geq 1$ a natural number) and the last exponent becomes :
$$1\leq \frac{k-1}{\alpha^p}\leq \alpha$$
It's true because we can always choose $k$ such that :
$$\alpha^p\leq k \leq \alpha^{p+1}$$
So we reduce this case to the case $1\leq k\leq 1+\alpha $
Case $k\leq 1+\alpha $
Using Bernoulli's inequality and derivatives we have $1\leq k\leq 2$ and $0<x\leq \frac{1}{4}$
$$(1-x)^{(2x)^k}\leq 1-x(2x)^k$$ And $$x^{(2(1-x))^k}\leq x(2x)^k$$
In the same idea we have $2\leq k\leq 1+\alpha$ and $0<x\leq \frac{1}{3}$
$$(1-x)^{(2x)^k}\leq 1-x(2x)^k$$ And $$x^{(2(1-x))^k}\leq x(2x)^k$$
Now to finalize the sketch of proof we have :
$h(k)$ is decreasing for $1\leq k\leq 2$ and $ \frac{1}{4}\leq x\leq 0.5\quad (4)$
$h(k)$ is decreasing for $2\leq k\leq 1+\alpha$ and $ \frac{1}{3}\leq x\leq 0.5\quad (5)$
Questions :
It is good and coherent ?
How to show $(4)$ and $(5)$?
Thanks in advance !
Regards Max
[1] Vasile Cirtoaje, "Proofs of three open inequalities with power-exponential functions", The Journal of Nonlinear Sciences and its Applications (2011), Volume: 4, Issue: 2, page 130-137. https://eudml.org/doc/223938
https://link.springer.com/article/10.1186/1029-242X-2013-468


