For $n \geq 1$, let $$H_n = \sum_{k=1}^n \frac{1}{k}$$
For all $x \in \mathbb{R}$, let $f(x) = \min \lbrace n \in \mathbb{N} : H_n \geq x \rbrace$, and $g(x)= \min \lbrace n \in \mathbb{N} : \ln(n)+\gamma \geq x \rbrace$.
Let $\varepsilon > 0$. By a very classical result, you have
$$H_n = \ln(n)+ \gamma + o(1),$$
therefore there exists $N \in \mathbb{N}$ such that for all $n \geq N$,
$$|H_n - \ln(n)-\gamma| < \varepsilon$$
Fix a $x \geq H_N +1$. Then for all $n \in \mathbb{N}$,
$$n \geq f(x) \Longrightarrow H_n \geq x \Longrightarrow (H_n \geq x \text{ and } n \geq N) \Longrightarrow \ln(n)+\gamma \geq x-\varepsilon \Longrightarrow n \geq g(x-\varepsilon)$$
So $f(x) \geq g(x-\varepsilon)$. Similarly, for all $n \in \mathbb{N}$,
$$n \geq g(x) \Longrightarrow \ln(n)+\gamma \geq x\Longrightarrow H_n \geq x-\varepsilon \Longrightarrow n \geq f(x-\varepsilon)$$
So $g(x) \geq f(x-\varepsilon)$. So we basically proved that
$$\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \geq A, g(x-\varepsilon) \leq f(x) \leq g(x+\varepsilon)$$
In particular,
$$\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \geq A, \frac{g(x+1-\varepsilon)}{g(x+\varepsilon)} \leq \frac{f(x+1)}{f(x)} \leq \frac{g(x+1+\varepsilon)}{g(x-\varepsilon)}$$
This implies that there exists a sequence $(\varepsilon_k)$ that tends to $0$ such that for all $k \in \mathbb{N}$, one has
$$\frac{g(k+1-\varepsilon_k)}{g(k+\varepsilon_k)} \leq \frac{f(k+1)}{f(k)} \leq \frac{g(k+1+\varepsilon_k)}{g(k-\varepsilon_k)}$$
Finally, by definition of $g$, $$\frac{g(k+1-\varepsilon_k)}{g(k+\varepsilon_k)} =\frac{\lfloor \exp(k+1-\varepsilon_k-\gamma)\rfloor}{\lfloor \exp(k+\varepsilon_k-\gamma)\rfloor} \sim \frac{ \exp(k+1-\varepsilon_k-\gamma)}{\exp(k+\varepsilon_k-\gamma)} \rightarrow e$$
and similarly $$\frac{g(k+1+\varepsilon_k)}{g(k-\varepsilon_k)} \rightarrow e$$
So finally,
$$\lim_{k \rightarrow +\infty} \frac{f(k+1)}{f(k)} = e$$