2

We are given the following $n\times n$ matrix, whose terms are:

  • $a+b$ for the terms in the diagonal ($i=j$).
  • $a$ for the rest of the elements.

I know we can simply compute this and try to find a pattern, but is there a faster way? Maybe using some properties of the determinant of a matrix?

Uri Toti
  • 533

4 Answers4

1

Let $\mathbf e_i$ denote the $i$th standard base vector and $\mathbf j=\sum\mathbf e_i$ denote the "all-ones" vector.

Clearly, $A\mathbf j=(b+na)\mathbf j$, so $\mathbf j$ is an eigenvector of eigenvalue $b+na$.

Also $A\mathbf e_i=b\mathbf e_i+a\mathbf j$ so that for $2\le i\le n$, $A(\mathbf e_i-\mathbf e_1)=b(\mathbf e_i-\mathbf e_1)$, i.e., we know $n-1$ linearly independent eigenvectors of eigenvalue $b$.

All in all, we have found a basis consisting of eigenvectors an know their eigenvalues, and can conclude that $$\det A=(b+na)\cdot b^{n-1}.$$

0

The given matrix may be written as $bI_n+\mathbf a\mathbf1^T$ where $\mathbf x$ denotes a vector consisting of $n$ copies of $\mathbf x$. The matrix determinant lemma gives the required determinant as $$(1+\mathbf 1^T(I_n/b)\mathbf a)\det bI_n=(1+na/b)b^n=b^n+nab^{n-1}$$

Parcly Taxel
  • 103,344
0

You can use the matrix determinant lemma.

You have

$$C = b I + a {\bf u} {\bf u}^t$$

where ${ \bf u}$ a all-ones column vector.

Then $$\det(C) = (1 + a {\bf u}^t({b}I)^{-1} {\bf u}) \det(b I) $$

Can you go on from here?

leonbloy
  • 63,430
  • The problem is supposed to be solved by only using determinant properties... not that advanced lemma, although it makes things a lot easier. – Uri Toti Oct 28 '20 at 19:26
0

\begin{align*} & \begin{vmatrix} a + b & a & a & \cdots & a \\ a & a + b & a & \cdots & a \\ a & a & a + b & \cdots & a\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots &a + b \end{vmatrix} \\ = & \begin{vmatrix} na + b & na + b & na + b & \cdots & na + b \\ a & a + b & a & \cdots & a \\ a & a & a + b & \cdots & a\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots &a + b \end{vmatrix} \\ = & (na + b)\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & a + b & a & \cdots & a \\ a & a & a + b & \cdots & a\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots &a + b \end{vmatrix} \\ = & (na + b)\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & b & 0 & \cdots & 0 \\ 0 & 0 & b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b \end{vmatrix} \\ =& (na + b)b^{n - 1} \end{align*}

Can you figure out what operations I used in each step?

Zhanxiong
  • 14,040