Prove that $\sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}\gt1$, where a, b, c >0.
I tried, $\sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}} = \frac{a}{\sqrt{a}\sqrt{a+b}}+\frac{b}{\sqrt{b}\sqrt{b+c}}+\frac{c}{\sqrt{c}\sqrt{c+a}} \ge \frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{\sqrt{a}\sqrt{a+b}+\sqrt{b}\sqrt{b+c}+\sqrt{c}\sqrt{c+a}}$.
Then $\sqrt{a}\sqrt{a+b} \le \sqrt{2}/2 (2a+(a+b))$.
This only gave me $\sqrt{2}/2 + \sqrt{2}(\frac{ab+bc+ca}{a+b+c})$.