I need to prove $\frac{|x+y+z|}{1+|x+y+z|} \le \frac{|x|}{1+|y|+|z|}+\frac{|y|}{1+|x|+|z|}+\frac{|z|}{1+|x|+|y|}$. I've tried to use triangle inequality or to explore the form of $(a+b+c)^2$ but it won't get me anywhere. I would be grateful for some suggestions.
-
2$t \to \frac t {1+t}$ is an increasing function of $[0,\infty)$. – Kavi Rama Murthy Oct 30 '20 at 12:35
-
In both the title and the body, there seems to be an extraneous absolute value sign in the denominator of the second term on the right-hand side. – saulspatz Oct 30 '20 at 12:35
-
1Have a look at https://math.stackexchange.com/q/194314 or https://math.stackexchange.com/q/983043, those can easily be adapted to your case. – Martin R Oct 30 '20 at 12:35
-
Should the first term on the RHS be $ |x| / ( 1 + |y| + \color{red}{|z|})$? – Calvin Lin Oct 30 '20 at 14:34
-
@MartinR Not quite(as yet), esp for the first post. The naive adaptation gives LHS $\leq \sum \frac{|x|}{1 + |x|}$, but this is larger than the RHS. – Calvin Lin Oct 30 '20 at 14:46
-
@CalvinLin: With “adaption” I meant using the triangle inequality for $|x+y+z|$ with the monotony of $f(x) = x/(1+x)$. – Martin R Oct 30 '20 at 14:49
-
@MartinR Yes. That's what I did in my solution. – Calvin Lin Oct 30 '20 at 14:50
-
To prove is that $\frac{|x+y+z|}{1+|x+y+z|}< \frac{|x|}{1+|y|+|z|} + \frac{|y|}{1+|x|+|z|}+\frac{|z|}{1+|x|+|y|}$ or did you really mean $\frac{|x+y+z|}{1+|x+y+z|}< \frac{|x|}{1+|x|+|y|} + \frac{|y|}{1+|x|+|z|}+\frac{|z|}{1+|x|+|y|}$ ? – Noureddine Ouertani Oct 30 '20 at 16:12
3 Answers
as $|x+y+z|\le |x|+|y|+|z|$
let $|x|=a,|y|=b,|z|=c$
it suffices to prove $$\sum \frac{a}{1+b+c}\ge \sum \frac{a+b+c}{1+a+b+c}$$
indeed by C-S/titu's lemma; $$\sum \frac{a}{1+b+c}=\sum \frac{a^2}{a+ba+ca}\ge \frac{{(a+b+c)}^2}{a+b+c+2(ab+bc+ca)}\ge \frac{a+b+c}{1+a+b+c}$$
Here we used $$\frac{2ab+2bc+2ca}{a+b+c}\le a+b+c$$ which is just $a^2+b^2+c^2\ge 0$
- 11,860
We will prove a stronger statement.
Lemma: $f(x) = \frac{x}{1+x}$ is an increasing function on $ x \geq 0$.
This is obvious by setting $ f(x) = 1 - \frac{1}{1+x}$, which is increasing on $ x \geq -1$.
Lemma: $ |x+y+z| \leq |x| + |y| + |z| $.
This is obvious by the basic properties of absolute values.
Corollary:
$$ \frac{ |x+y+z| } { 1 + |x+y+z|} \leq \frac{|x|+|y|+|z| } { 1 + |x| + |y| + |z| } \leq \sum \frac{ |x| } { 1 + |y| + |z| }$$
- 68,864
Let's check whether: $$S(N) = \frac{|\sum_{i=0}^{N} x_i|}{1+|\sum_{i=0}^{N} x_i|}\le \sum_{i=0}^{N} \frac{|x_i|}{1+ |\sum_{j=0;j \ne i}^{N} x_j|}$$ for all natural numbers $N$ and all natural numbers $i<N+1$ is true.
The inequation $\frac{|x+y+z|}{1+|x+y+z|} \le \frac{|x|}{1+|y|+|z|} + \frac{|y|}{1+|x|+|z|}+\frac{|z|}{1+|x|+|y|}$ is the special case for $i=2$ with $x=x_0, y=x_1, z=x_2$
For $N=0$ we have $\frac{|x_0|}{1+|x_0|} \le \frac{|x_0|}{1+ 0}$ for all $x_0$
Let's suppose for a certain $N$ that we have $$S(N) = \frac{|\sum_{i=0}^{N} x_i|}{1+|\sum_{i=0}^{N} x_i|} \le \sum_{i=0}^{N} \frac{|x_i|}{1+ |\sum_{j=0;j \ne i}^{N} x_j|}$$ for all natural numbers $N$ and all natural numbers $i<N+1$.
and prove this inequality for $S(N+1)$ which means let's prove the following:
$$S(N+1) \le \sum_{i=0}^{N+1} \frac{|x_i|}{1+ |\sum_{j=0;j \ne i}^{N+1} x_j|}$$ all natural numbers $i<N+2$.
We first will use $\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$ like proved in this link:Prove $\frac{|a+b|}{1+|a+b|}<\frac{|a|}{1+|a|}+\frac{|b|}{1+|b|}$.
for $a = x_{N+1}$ and $ b= \sum_{i=0}^{N} x_i$
$$\frac{|x_{N+1}+\sum_{i=0}^{N} x_i|}{1+|x_{N+1}+\sum_{i=0}^{N}x_i|} \le \frac{|x_{N+1}|}{1+|x_{N+1}|} + \frac{|\sum_{i=0}^{N} x_i|}{1+|\sum_{i=0}^{N} x_i|}$$
means that
$$\frac{|x_{N+1}+\sum_{i=0}^{N} x_i|}{1+|x_{N+1}+\sum_{i=0}^{N}x_i|} \le \frac{|x_{N+1}|}{1+|x_{N+1}|} + S(N)$$
means that $$ \frac{|x_{N+1}+\sum_{i=0}^{N} x_i|}{1+|x_{N+1}+\sum_{i=0}^{N}x_i|} \le \frac{|x_{N+1}|}{1+|x_{N+1}|} + \sum_{i=0}^{N} \frac{|x_i|}{1+ |\sum_{j=0;j \ne i}^{N} x_j|}$$
means that
$$S(N+1) \le \sum_{i=0}^{N+1} \frac{|x_i|}{1+ |\sum_{j=0;j \ne i}^{N+1} x_j|}$$
Proved!
-
$ \frac{|x_{N+1}|}{1+|x_{N+1}|} + \frac{|x_i|}{1+ |\sum_{j=0;j \ne i}^{N} x_j|} < \frac{|x_{N+1}|}{1+|x_{N+1}|} + \frac{|x_i|}{1+ |x_{N+1}| + |\sum_{j=0;j \ne i}^{N} x_j|}$ looks wrong. – Martin R Oct 30 '20 at 18:24
-
-
-
I finished the proof now after revisiting it. Could you please check whether it's correct now? – Noureddine Ouertani Oct 30 '20 at 20:15