Let $\Psi:G \to H$ be a homomorphism between a group $G$ and an Abelian group $H$,then show :
$$[G,G] \le \text{ker}(\Psi)$$ Where $[G,G]$ is the commutator subgroup of $G$.
I came up with the question: Does $$ [G,G] \trianglelefteq \text{ker}(\Psi)$$
hold ?
My work:
let $x,y \in [G,G]$ then $x=[a,b]$ and $y=[c,d]$ for some $a,b,c,d \in G$,then:
$$\Psi(xy^{-1})=\Psi(x)\Psi(y^{-1})$$
From the fact that $[h,g]^{-1}=[g,h]$ it follows that:
$$\Psi(xy^{-1})=\Psi([a,b])\Psi([d,c])=\Psi(a)\Psi(b)\Psi(a)^{-1}\Psi(b)^{-1}\Psi(d)\Psi(c)\Psi(d)^{-1}\Psi(c)^{-1}$$
Since $\forall g \in G:\Psi(g) \in \Psi(G)=\text{Im}(G) \subseteq H$ and $H$ is Abelian hence:
$$\Psi(xy^{-1})=e_H$$ I conclude that $xy^{-1} \in \text{ker}(G)$ but this does not imply $xy^{-1} \in [G,G]$ ,on the other hand $\text{ker}(G) \trianglelefteq G$ we see that $xy^{-1} \in G$,again this is not useful.
So is my proof wrong or it's not true to claim that $[G,G] \trianglelefteq \text{ker}(\Psi)$?